Parallel imaging is an essential tool for accelerating image acquisition by exploiting the spatial encoding effects of RF receiver coil sensitivity functions. In practice, the coil sensitivity functions are often estimated from low-resolution auto-calibration signals (ACS) which limits estimation accuracy and in turn results in aliasing artifacts in the final reconstructions. This paper presents a novel deep learning based method for coil sensitivity estimation which exploits empirical and physics-based prior information to produce high-accuracy estimates of coil sensitivity functions from low-resolution ACS. Results are given which demonstrate the proposed method provides a significant reduction in aliasing over standard methods.
This abstract and the presentation materials are available to members only; a login is required.