Free induction decay navigators (FIDnavs) are sensitive to head motion and can be rapidly acquired using standard scanner hardware, making them an attractive approach for motion detection in pediatric MRI. In this study, we perform a head-to-head comparison of various FIDnav motion detection algorithms in controlled volunteer experiments and in pediatric patients scanned under typical conditions using a modified MPRAGE sequence. We demonstrate that computing the change in cross-correlation coefficient between FIDnav signal vectors results in excellent detection accuracy in both volunteers and patients, based on concurrent ground-truth RMS displacements measured using an electromagnetic tracking system.
This abstract and the presentation materials are available to members only; a login is required.