Conventional EPI requires a temporal resolution of 2-3 seconds to obtain whole-brain data for resting-state fMRI (rsfMRI). More recently, multi-band EPI (MB) acquisition can be used to improve temporal resolution and obtain whole-brain coverage in less than 1 second. Our hypothesis is that MB acquisition can be used to detect the time-lag of neuronal activity. In this study, we estimated the time-lag in the default mode network using conventional (TR 2000 ms) and MB (TR 500 ms) rsfMRI. Significant time-lags between PCC and AG, and between mPFC and AG were detected only for the MB acquisition.
This abstract and the presentation materials are available to members only; a login is required.