Osteoarthritis (OA) is the most common cause of disability in the United Kingdom and United States. Identifying the rate of OA progression remains an important clinical and research challenge for early disease monitoring. Texture analysis of tibial subchondral bone using magnetic resonance imaging (MRI) has demonstrated the ability to discriminate between different stages of OA. This work combines texture analysis with machine learning methods (Lasso, Decision Tree, and Neural Network) to predict radiographic disease progression over 3 years, trained using data from the Osteoarthritis Initiative. We achieved high sensitivity (86%), specificity (64%) and accuracy (74%) for predictions of OA progression.
This abstract and the presentation materials are available to members only; a login is required.