MRS-detected total choline is a promising noninvasive surrogate marker of chemotherapy response in breast cancer. We have utilized six widely clinically used cancer chemotherapeutic drugs to treat triple-negative breast cancer cells to elucidate their molecular effects on choline phospholipid metabolism. We employed high-resolution 1H MRS to detect changes in cellular choline metabolites combined with molecular approaches. Glycerophosphocholine increased in triple-negative breast cancer cells following all six types of chemotherapeutic treatment compared to vehicle control, while phosphocholine decreased, increased, or remained stable depending on the specific drug used, making glycerophosphocholine the most reliable surrogate marker of chemotherapy response in our study.
This abstract and the presentation materials are available to members only; a login is required.