Meeting Banner
Abstract #0378

Chirp-Encoded 3D GRE and MPRAGE sequences

Kamlesh Pawar1,2, Zhaolin Chen1,3, Jingxin Zhang3,4, N Jon Shah1,5, and Gary F Egan1,2

1Monash Biomedical Imaging, Monash University, Melbourne, Australia, 2School of Psychological Sciences, Monash University, Melbourne, Australia, 3Department of Electrical and Computer System Engineering, Monash University, Melbourne, Australia, 4School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia, 5Institute of Medicine, Research Centre Juelich, Juelich, Germany

Non-Fourier encoding such as random, noiselets and chirp encoding have demonstrated image quality improvement in accelerated compressive sensing (CS) MRI applications. However, implementation of the non-Fourier encoding schemes in 2D spin echo sequence limits its use in practice, due to the fact that spin echo is inherently a slow sequence. In this work, we present a novel implementation of chirp encoding in fast 3D gradient echo (GRE) and MPRAGE sequences. The chirp encoding scheme is compared with conventional Fourier encoding for compressive sensing and susceptibility weighted imaging applications. The evaluation demonstrates that chirp encoding is able to preserve spatial resolution better than the Fourier encoding.

This abstract and the presentation materials are available to members only; a login is required.

Join Here