Highly undersampled 3D radial is very useful for 3D imaging acceleration, and compressed sensing and low-rank can be used for reconstruction of the undersampled kooshball data. In this study, we propose a novel reconstruction method for fast 3D T1 mapping of carotid artery using 3D radial sampling. The reconstruction method is based on low-rank modeling with parallel imaging and sparsity constraints, and is potential to improve the accuracy and precision of T1 estimation. The aim of this study is to evaluate the effectiveness of the proposed method using phantom and in vivo imaging experiments on volunteers and carotid atherosclerosis patients.
This abstract and the presentation materials are available to members only; a login is required.