The simultaneous multi-slice (SMS) imaging technique CAIPIRINHA has proven to be highly efficient for extending the slice coverage in 2D imaging. When accelerating balanced steady-state free-precession (bSSFP) sequences with SMS-CAIPIRINHA, modulating k-space by means of slice-specific RF phase cycles leads to undesired slice-specific shifts of the bSSFP pass-band structure. Gradient-controlled local Larmor adjustment (GC-LOLA) removes this drawback. By means of slice gradient unbalancing, the Larmor frequency is made slice position dependent, which allows compensating for the pass-band shifts and stabilizes CAIPIRINHA-accelerated bSSFP imaging with respect to B0 field inhomogeneity.
This abstract and the presentation materials are available to members only; a login is required.