In order to further elucidate the biophysical origins of spatio-temporal correlation tensors and validate the possibility of detecting BOLD signals in white matter, we acquired resting-state fMRI in volunteers breathing alternately room air and CO2 enriched air to induce a hypercapnic-normoxic change in CBF and CBV. Our hypercapnic respiratory challenge experiments suggest that spatio-temporal correlations in white matter may be driven by local hemodynamic effects, consistent with BOLD effects instead of other potential mechanisms. Our results also imply and support our previous observation that BOLD signals in white matter can be reliably detected, and resting-state correlations between voxels are anisotropic.
This abstract and the presentation materials are available to members only; a login is required.