Pseudo-continuous arterial spin labeling (pCASL) with segmented 3D-GRASE acquisition is widely accepted as the optimal ASL technique. However, the method suffers from blurring along the partition direction caused by point spread function (PSF) broadening. In this study, a PSF deconvolution method for pCASL images with 3D-GRASE acquisition is developed and evaluated in simulations and in-vivo experiments. The deconvolution method greatly reduces the effects of the PSF and recover the perfusion signal for segmentation factors of at least 2PAR x 2PE. The proposed deconvolution method improves the accuracy of cerebral blood flow quantification and facilitates the use of lower segmentation factors.
This abstract and the presentation materials are available to members only; a login is required.