Lithium (Li) is the first-line mood stabilizer to treat bipolar disorder patients. However, its mechanisms of action and transport across the blood-brain barrier remain poorly understood. In this study, we aimed at mapping ex vivo the cerebral Li distribution of rats treated for 28 days with Li2CO3 using 7Li-MRI at 17.2 Tesla. Using a phantom replacement approach, MRI-derived Li concentrations were calculated and validated by comparison to inductively coupled plasma-mass spectrometry (ICP-MS) measurements. Lithium distributions were uneven (normalized lithium content ranging from 0.7 to 1.4) and symmetrical with consistently lower concentrations in the metencephalon and higher ones in the cortex.
This abstract and the presentation materials are available to members only; a login is required.