Implanted devices for deep brain stimulation (DBS) create a safety concern during MRI due to heating at exposed tip of the lead. Parallel transmit (pTx) can potentially reduce heating of the lead tip when radiofrequency (RF) inputs are selected by an appropriate numerical optimization method. To date, however, this method has not considered how the trajectory of DBS leads affects heat deposition. The present work investigates the optimized pTx method for realistic DBS lead trajectories estimated from intra-operative computed tomography (CT) scans of nine patients, with simulations indicating statistically significant reduction in heating at lead tips while maintaining reasonable B1+-field homogeneity.
This abstract and the presentation materials are available to members only; a login is required.