Amide proton transfer (APT) MR imaging has proved to be capable of detecting/grading brain tumors as well as assessing treatment response. Routinely used magnetization transfer (MT) asymmetry is contaminated with MT, nuclear overhauser effect (NOE) and T1 relaxation time of water. In this study, the dominant contributors of direct water saturation and MT to Z-spectrum were estimated from a sum of two Lorentzian functions, and APT was corrected with T1 scale and inverse Z-spectrum analysis. Results showed that the corrected APT can reliably depict glioma heterogeneity post-treatment, in accordance with H & E histological observations.
This abstract and the presentation materials are available to members only; a login is required.