Glycogen is the principle intracellular storage for energetic needs in muscle and information about its spatial distribution would be a great additional tool for traumatology and sport sciences. In this study, we aimed to map in vivo muscular glycogen using CEST imaging in rodent. We have shown that optimal B1 saturation power allowed CEST imaging glycogen distinguishable from the neighboring creatine at 14.1 Tesla. We applied our optimized protocol on muscle after exercise session, resulting in 50% reduction of MTRasym comparing to muscle at resting state. This is supporting the specificity of our method and is consistent with literature.
This abstract and the presentation materials are available to members only; a login is required.