Printed magnetic ink creates predictable B0 field perturbations based on printed shape and magnetic susceptibility. This can be exploited for contrast in MR imaging techniques that are sensitized to off-resonance, such as fat-suppressed imaging with spectral presaturation. Magnetic ink therefore has the potential to be used in temporary tattoos for creating MR-visible skin markings of arbitrary shape and size, with applications in surgical planning, radiation therapy, tracking of joint movement, or other image registration scenarios. Here we characterize the susceptibility variations of magnetic ink and demonstrate application for MR-visible skin markings.
This abstract and the presentation materials are available to members only; a login is required.