While T1 and T2 parameter mapping using fast imaging with steady-state precession (FISP) magnetic resonance fingerprinting (MRF) has shown consistency with classic relaxometry techniques under static field (B0) inhomogeneity, the use of spiral k-space trajectories blurs parameter map boundaries in regions of high B0 variability. This work shows deblurring in phantom and in vivo relaxation maps generated using a published MRF sequence in conjunction with multi-frequency interpolation (MFI) acquired using undersampled and fully sampled spirals on a 3 Tesla human MR scanner.
This abstract and the presentation materials are available to members only; a login is required.