Tracer-kinetic model driven motion-correction is a highly effective strategy for 2D free-breathing DCE-MRI. In this study we address the challenge of translation to 3D by improving computational efficiency and evaluating performance in the presence of ghosting artefacts. Results in 8 patient cases show that the optimised algorithm is feasible in realistic computation times and effectively removes between-frame breathing motion despite significant within-frame artefacts. Quantitative evaluation against reference measurements shows a reduction of the bias, but precision is limited by within-frame artefacts and will require an integrated motion-correction and image reconstruction strategy.
This abstract and the presentation materials are available to members only; a login is required.