Meeting Banner
Abstract #2779

Interstitial Fluid Pressure Correlates with Water Diffusion Coefficient in Mouse Mammary Tumor Model

Sungheon Kim1, Lindsey DeCarlo2, Gene Young Cho1, Jens H. Jensen1, Daniel K. Sodickson1, Linda Moy1, Silvia Formenti3, Robert J. Schneider2, Eric E. Sigmund1

1Center for Biomedical Imaging, Radiology, New York University, New York, NY, United States; 2Microbiology, New York University, New York, NY, United States; 3Radiation Oncology, New York University, New York, NY, United States


Effective delivery of therapeutic drug is often impeded by physiological barriers including elevated interstitual fluid pressure (IFP). In this study, we investigated the feasibility of using Intra-Voxel-Incoherent-Motion (IVIM) diffusion weighted imaging (DWI) to measure tumor blood flow and the association of IVIM diffusion coefficients with IFP. From a study of 10 mice with 4T1 mouse mammary tumor model, strong correlations (R2 > 0.64) were observed between the elevated IFP (> 5 mmHg) and diffusion coefficients estimated using monoexponential as well as biexponential diffusion models. This result suggests a high potential of DWI parameters as surrogate markers for IFP.