Meeting Banner
Abstract #2492

Saturation-Recovery Snapshot FLASH Reduces RF Pulse Angle Inhomogeneity Artefacts in DCE-MRI of the Breast at 3T.

Che A. Azlan1,2, Trevor S. Ahearn1, Pierluigi Di Giovanni1, Scott I.K. Semple3, Fiona J. Gilbert1, Thomas W. Redpath1

1Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, Scotland, United Kingdom; 2Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Medical Physics, University of Edinburgh, Edinburgh, Scotland, United Kingdom


The objective of this study was to evaluate the effectiveness of Hoffmann's method of saturation-recovery snapshot FLASH (SRSF) to minimise the effect of radiofrequency (RF) pulse angle inhomogeneity in breast dynamic contrast-enhanced (DCE)-MRI at 3T. We employed computer simulation and experiment on gel phantom for this purpose. The simulation shows that Hoffmanns SRSF produces a robust saturation in the presence of expected RF inhomogeneity. The enhancement ratio data acquired broadly matches the simulation. Implementing this method may be a solution to minimise the effects of RF pulse angle inhomogeneity in DCE-MRI of the breast at 3T.