Meeting Banner
Abstract #2269

Evaluation of the Applicability of Manganese-Enhanced and Dynamic Gadolinium-Enhanced Imaging to Study the Role of Caveolin-1 in Blood-Retinal Barrier Integrity

Philippe Garteiser1, Bruce A. Berkowitz2,3, Debbie Saunders1, Rebecca Cranford1, Rheal A. Towner1, Michael H. Elliott4

1Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States; 2Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, United States; 3Department of Ophthalmology, Wayne State University, Detroit, MI, United States; 4Department of Ophtalmology, Dean A McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States


Mn-enhanced MRI (MEMRI) has recently emerged as an important tool in retinal function studies. Caveolin-1 (Cav-1), the principal protein member of caveolar membrane domains, is believed to be essential to blood-retinal barrier integrity and ion homeostasis of the retina. Here, we evaluate how MEMRI and other MRI techniques may detect functional disruptions induced by cell type-specific knock out of the Cav-1 gene in mice. The MEMRI signature of light and dark adaptation and the dynamic gadolinium-enhanced signal behavior of iodate-induced retinal impairments indicate that both methods have sufficient sensitivity to warrant their application to cell-type specific Cav-1 ko mice.