Meeting Banner
Abstract #1871

Migration of MPIO-Labeled Glioma Cells in the Rat Brain: Validation with Histology and Fluorescence Microscopy

Divya Raman1, Anitha Priya Krishnan2, Scott Kennedy3, John Olschowka4, Sammy N'dive2, Delphine Davis5, Walter G. O'Dell2

1Biomedical Engineering, University of Rochester, Rochester, NY, United States; 2Radiation Oncology, University of Rochester, Rochester, NY, United States; 3Biophysics, University of Rochester, Rochester, NY, United States; 4Neurobiology and Anatomy, University of Rochester, Rochester, NY, United States; 5Imaging Sciences, University of Rochester, Rochester, NY, United States


Our hypothesis is that paths of elevated diffusion provide a preferred route for migration of cancer cells away from primary tumor. This can be used to improve radiation treatment of gliomas. Toward this end, we have developed a computational model of cell migration based upon MR-DTI to predict microscopic spread of cancer in patients. Objective of this work is to track MPIO labeled rat glioma cells in rat brain and compare it to rat DTI model and thereby demonstrate that tumor cells migrate farther from the site of engraftment along major fiber tracts compared to gray matter.