Meeting Banner
Abstract #1791

Acuracy and Reliability of Post-Processing Software for DSC MR Perfusion: Quantitative Analysis by Digital Phantom Data

Kohsuke Kudo1, Soren Christensen2, Makoto Sasaki1, Matus Straka3, Shunrou Fujiwara1, Kinya Ishizaka4, Yuri Zaitsu4, Noriyuki Fujima4, Satoshi Terae4, Kuniaki Ogasawara5, Leif Ostergaard6

1Advanced Medical Research Center, Iwate Medical University, Morioka, Iwate, Japan; 2Departments of Neurology and Radiology, University of Melbourne, Melbourne, Australia; 3Department of Radiology, Stanford University, CA, United States; 4Department of Radiology, Hokkaido University Hospital, Sapporo, Japan; 5Department of Neurosurgery, Iwate Medical University, Morioka, Iwate, Japan; 6Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark


A variety of post-processing programs and algorithms for dynamic susceptibility contrast (DSC) MR perfusion are available; however, the accuracy and reliability of these programs have not been subject to a standardized quality control. We developed digital phantom data set, to evaluate the accuracy and characteristics of quantitative values derived from DSC perfusion analysis software. By using this phantom, we could check tracer-delay dependency for CBF, CBV, MTT, and Tmax, as well as linearity of CBF and MTT against true values.