Meeting Banner
Abstract #0982

Hadamard-Type Pulse-Phase Encoding for Imaging of Multi-Resonant Fluorine-19 Nanoparticles in Targeted Molecular MRI

Jochen Keupp1, Samuel A. Wickline2, Gregory M. Lanza2, Shelton D. Caruthers2

1Philips Research Europe, Hamburg, Germany; 2C-TRAIN, Washington University, St. Louis, MO, United States


19F-MRI allows the direct quantification of nanoparticles (NP) or fluorinated drugs in molecular imaging. Previously, α ν β 3-integrin targeted NP have been shown to detect and quantify angiogenesis in tumor models. Towards human translation, clinically-relevant NP-substrates like perfluoro-octyl-bromide (PFOB) should be applied, but rich spectra and large chemical shifts (CS) add significant complexity. Many methods have been developed to manage CS-artifacts, but tradeoffs like long encoding time or a need for complex corrections remain. Herein, Hadamard-type pulse phase encoding is introduced in the CS domain as a robust and efficient method to detect multi-resonant 19F labels. Feasibility is demonstrated in vitro and in vivo for angiogenesis-targeted PFOB-NP in Vx2 tumor bearing rabbits.