Meeting Banner
Abstract #0579

The FA Connectome: A Quantitative Strategy for Studying Neurological Disease Processes

Stephen Rose1,2, Kerstin Pannek, 1,3, Olivier Salvado4, Parnesh Raniga4, Fusun Baumann5, Robert Henderson5

1UQ Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia; 2Centre for Medical Diagnostic Technologies in Queensland, University of Queensland, Brisbane, Queensland, Australia; 3Centre for Magnetic Resonance, University of Queensland, Brisbane, Queensland, Australia; 4The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia; 5Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia


Structural connectivity indices derived using diffusion based HARDI or q-ball imaging in conjunction with functional parcellation of the cortex from high resolution MRI, has provided insight into the anatomical conformation of many of the important neural networks in the living brain. We are developing the concept of the FA connectome, i.e. combining a measure of fractional anisotropy, a quantitative diffusivity metric that reflects the integrity of WM pathways, with the connectivity matrix. When applied to study Amyotrophic Lateral Sclerosis, this technique shows identifies a number of key corticomotor pathways with reduced mean FA compared to control participants.