Meeting Banner
Abstract #0086

Three Dimensional Rapid Diffusion Tensor Microimaging for Anatomical Characterization and Gene Expression Mapping in the Mouse Brain

Manisha Aggarwal1, Susumu Mori1, Tomomi Shimogori2, Seth Blackshaw3, Jiangyang Zhang1

1Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; 2RIKEN Brain Science Institute, Saitama, Japan; 3The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States


Diffusion tensor imaging (DTI) can reveal superior contrasts than relaxation-based MRI in premyelinated developing mouse brains. Current challenges for the application of DTI to mouse brain imaging at microscopic levels include the limitation on the achievable spatial resolution. In this study, high resolution rapid DT-microimaging of the embryonic and adult mouse brains (up to 50-60 m) based on a 3D diffusion-weighted gradient and spin echo (DW-GRASE) scheme with twin-navigator echo phase correction is presented. We also demonstrate successful 3D mappings of gene expression data from in situ hybridization to high resolution DTI images in the early embryonic mouse brain.