Diwei Zhou1,2, Ian L. Dryden1,2, Alexey Koloydenko3, Li Bai2,4
1School of Mathematical Sciences, University
of Nottingham, Nottingham, UK; 2CMIAG Research Group, University of
Nottingham, Nottingham, UK; 3Mathematics Department, Royal Holloway
University of London, London, UK; 4School of Computer Science and
IT, University of Nottingham, Nottingham, UK
Since the diffusion tensor (DT) is a symmetric, positive-definite matrix, we
consider an alternative non-Euclidean metric for statistical analysis based on
the weighted Procrustes mean. By computing the full Procrustes metric from a
diffusion tensor to isotropy, we find an alternative measure of anisotropy
called Procrustes anisotropy. For comparison, we plot geodesic paths between
two DT’s with Euclidean, Log-Euclidean, Cholesky, Procrustes, Riemannian and
root-Euclidean metrics. We find that FA and PA maps from smoothed and
interpolated tensor fields with Procrustes analysis provide an improved method
to investigate the diffusion anisotropy in human brain compared to using the
raw DT images.