April M. Chow1,2, Jerry S. Cheung1,2, Ed X. Wu1,2
1Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China; 2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
Gas-filled microbubbles possess the ability to be an MR susceptibility contrast agent due to the induction of large local magnetic susceptibility differences by the gas-liquid interface. However, microbubble susceptibility effect is relatively weak when compared with other intravascular MR susceptibility contrast agents. In this study, we demonstrated that microbubble susceptibility effects can be improved by embedding and entrapping iron oxide nanoparticles, and hence microbubbles can be monitored with high sensitivity and low concentrations under MRI.