Meeting Banner
Abstract #0393

7 Tesla Transmit-Receive Array for Carotid Imaging: Simulation and Experiment

Graham Wiggins1, Bei Zhang1, Qi Duan1, Riccardo Lattanzi1, Stephan Biber2, Bernd Stoeckel3, Kellyanne McGorty1, Daniel K. Sodickson1

1Radiology, Center for Biomedical Imaging, NYU School of Medicine, New York, NY, USA; 2Siemens Healthcare, Erlangen, Germany; 3Siemens Medical Solutions USA Inc., New York, NY, USA


Full wave electromagnetic simulations were used to explore design options for a 4-element transmit and 8 element receive array for imaging the carotid arteries in humans at 7 Tesla. By phasing the excitation of the transmit elements, B1+ excitation efficiency at the depth of the carotids was improved. The simulations suggested shifting the transmit and receive elements relative to each other to account for the twisting B1+ and B1- fields at 7T. A carotid array was constructed based on these observations, and was compared to a similar receive array at 3 Tesla. Substantial SNR gains were observed.