Manus J. Donahue1, Jakob U. Blicher2, Bradley J. MacIntosh1, Karla L. Miller1, Leif Ostergaard2, David A. Feinberg3,4, Matthias Guenther3, Peter Jezzard1
1Clinical Neurology, The University of Oxford, Oxford, UK; 2Center for Functionally Integrative Neuroscience, Arhus University Hospital, Arhus, Denmark; 3Advanced MRI Technologies, Sebastopol, CA, USA; 4University of California at Berkeley, Berkeley, CA, USA
VASO-FLAIR magnetization preparation, previously limited to single-slice imaging, is appended to a single-shot 3D-GRASE readout to generate whole-brain CBV-weighted maps. CBV-weighted courses are compared to BOLD and CBF-weighted ASL during and following motor and visual stimulation. The 3D-GRASE VASO-FLAIR approach gives similar CBV traces to those found from single-slice techniques and corresponds well with BOLD and ASL. Following stimulation, the BOLD post-stimulus undershoot is larger and endures longer in visual cortex compared to motor cortex, whereas CBV and CBF returns to baseline at the same time.