A new experimental approach termed “molecular fMRI” aims to provide direct, minimally-invasive measures of neural function based on the application of molecular probes detectable in time-resolved MRI experiments. In this talk, we discuss the design and application of suitable probes for molecular fMRI, including their initial deployment for imaging several types of signaling molecules in the living brain. By improving the technology with more sensitive contrast agents and better brain delivery strategies, it will be possible to measure and map an expanding array of neurophysiological processes in animals and ultimately in humans.
This abstract and the presentation materials are available to members only; a login is required.