Robert L Barry1,2, Benjamin N Conrad1, Seth A Smith1,2, and John C Gore1,2
1Vanderbilt University Institute of Imaging Science, Nashville, TN, United States, 2Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
Spinal cord functional magnetic resonance imaging studies have previously used task-based paradigms, but we recently showed the existence of resting state networks within the cord at 7 Tesla. More recently we have successfully translated the acquisition, preprocessing, and analysis methods developed at 7 Tesla to more clinically relevant 3T scanners. Our results suggest that a run of approximately 6 mins is sufficient at 3T if resting state signals undergo bandpass filtering with frequencies up to 0.17 Hz. Thus, functional connectivity measures in the cervical cord are practical for widespread clinical applications for studying diseases of the central nervous system.