Andreia S Gaspar1,2, Giulio Ferrazzi1, Rita G Nunes1,2, Emer J Hughes3,4, Shaihan J Malik1, Laura McCabe3,4, Kelly Pegoretti3,4, Mary A Rutherford3,4, Joseph V Hajnal1,4, and Anthony N Price1,4
1Biomedical Engineering, King's College London, London, United Kingdom, 2Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal, 3Perinatal Imaging and Health, King's College London, London, United Kingdom, 4Centre for the Developing Brain, King's College London, London, United Kingdom
Effective suppression of maternal fat is critical for functional imaging of the fetal brain with echo planar imaging (EPI). Localized image-based shimming (IBS) for the fetal brain is required but can provoke high field variation in maternal adipose regions causing fat suppression to fail. We have addressed this issue by using IBS of the fetal brain with linear constraints across maternal fat regions and optimization of saturation pulse frequency offset. The results showed that is possible to obtain more complete fat supression when combining an optimized pulse offset with a constrained shimming approach without compromising fetal brain shim.