Meeting Banner
Abstract #4238

Dynamic Tagged Liver MRI Exploiting Tag-Constrained Sampling and Separation: Assessment of Liver Stiffness

Hyunkyung Maeng1,2 and Jaeseok Park2

1Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea, Republic of, 2Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea, Republic of

It is important to assess liver stiffness and monitor the progression of fibrosis in patients with liver diseases using non-invasive imaging. Exploiting the fact that the motion of the heart during cardiac cycle is an intrinsic driving source to deform the liver, dynamic tagged MRI can be employed to measure the cardiac motion induced displacements using harmonic phase images and thereby evaluate the corresponding strain maps in the liver. In this work, we propose a novel framework of compressed sensing (CS) for dynamic tagged liver MRI, in which: 1) data is acquired using tag-constrained, incoherent undersampling in k-t space, 2) a time series of morphologies is decomposed into transient tag-only images and stationary tag-free liver images, 3) both morphological components are then reconstructed directly from the tag-constrained, undersampled k-t space, and 4) the transient tag-only images are employed to estimate time-varying displacements and the corresponding strain maps while the stationary tag-free liver images are used as a structural roadmap.

This abstract and the presentation materials are available to members only; a login is required.

Join Here