Li Zhang1,2, Jennifer Barry2, Mihaela Pop1,2, and Graham A Wright1,2
1Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada, 2Sunnybrook Health Sciences Centre, Toronto, ON, Canada
Multi-contrast late enhancement (MCLE)1 images offer better visualization of myocardial infarction (MI) than conventional IR-FGRE. However, current MR images either with IR-FGRE or MCLE provide an inferior spatial resolution of 1.6-2.0mm in-plane with a slice thickness of 5-8mm in the clinical setting. Characterization of infarct heterogeneity requires high spatial resolution. We propose a novel method to reconstruct MCLE images at a high spatial resolution from a highly accelerated dataset acquired prospectively with three-dimensional (3D) MCLE. The method was validated in a preclinical model, producing an isotropic resolution of 1.5mm within a single breath-hold.