Inherent correction of both geometric distortion and motion-induced aliasing artifacts in multi-shot diffusion-weighted EPI
Mei-Lan Chu1, Arnaud Guidon2, Hing-Chiu Chang3, and Nan-kuei Chen1
1Brain Imaging and Analysis Center, Duke University, Durham, NC, United States, 2Global MR Applications and Workflow, GE Healthcare, Boston, MA, United States, 3Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, Hong Kong
A new reconstruction framework is developed to simultaneously correct geometric distortion and motion-induced aliasing artifacts in multi-shot DW-EPI data without relying on additional calibration scan or field mapping. Through reversing the polarity of phase-encoding gradient between interleaves in multi-shot EPI, the field inhomogeneities and segment-specific phase information can be inherently estimated from DW-EPI data. High-quality DWI images free from distortions and aliasing artifacts can then be reconstructed with our new POCSMUSE method that uses coil sensitivity profiles, shot-to-shot phase variations, and field inhomogeneities as the input.
This abstract and the presentation materials are available to members only;
a login is required.