Meeting Banner
Abstract #1308

Functional response to a complex visuo-motor task supports local compensatory mechanisms in Multiple Sclerosis

Adnan A.S. Alahmadi1,2, Matteo Pardini1,3, Rosa Cortese1, Niamh Cawley1, Rebecca S. Samson1, Egidio D'Angelo4,5, Karl J. Friston6, Ahmed T. Toosy1,7, and Claudia Angela Michela Gandini Wheeler-Kingshott1,5

1NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom, 2Department of Diagnostic Radiology, Faculty of Applied Medical Science, KAU, Jeddah, Saudi Arabia, 3Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Genoa, Italy, 4Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy, 5Brain Connectivity Center, C.Mondino National Neurological Institute, Pavia, Italy, Pavia, Italy, 6Wellcome Centre for Imaging Neuroscience, UCL, Institute of Neurology, London, United Kingdom, 7NMR Research Unit, Department of Brain Repair and Rehabilitation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom

We investigated simple and complex (non-linear) relationships between BOLD signals and different applied grip forces in multiple sclerosis (MS) patients and healthy volunteers (HV). Using a power grip event-related paradigm and modelling BOLD responses with a polynomial expansion of force, we show profound and distributed functional network reorganizations in sensorimotor, associative and cerebellar areas, probably indicating compensatory mechanisms in MS.

This abstract and the presentation materials are available to members only; a login is required.

Join Here